129 research outputs found

    Tract-Based Spatial Statistics in Preterm-Born Neonates Predicts Cognitive and Motor Outcomes at 18 Months.

    Get PDF
    BACKGROUND AND PURPOSE: Adverse neurodevelopmental outcome is common in children born preterm. Early sensitive predictors of neurodevelopmental outcome such as MR imaging are needed. Tract-based spatial statistics, a diffusion MR imaging analysis method, performed at term-equivalent age (40 weeks) is a promising predictor of neurodevelopmental outcomes in children born very preterm. We sought to determine the association of tract-based spatial statistics findings before term-equivalent age with neurodevelopmental outcome at 18-months corrected age. MATERIALS AND METHODS: Of 180 neonates (born at 24-32-weeks\u27 gestation) enrolled, 153 had DTI acquired early at 32 weeks\u27 postmenstrual age and 105 had DTI acquired later at 39.6 weeks\u27 postmenstrual age. Voxelwise statistics were calculated by performing tract-based spatial statistics on DTI that was aligned to age-appropriate templates. At 18-month corrected age, 166 neonates underwent neurodevelopmental assessment by using the Bayley Scales of Infant Development, 3rd ed, and the Peabody Developmental Motor Scales, 2nd ed. RESULTS: Tract-based spatial statistics analysis applied to early-acquired scans (postmenstrual age of 30-33 weeks) indicated a limited significant positive association between motor skills and axial diffusivity and radial diffusivity values in the corpus callosum, internal and external/extreme capsules, and midbrain (P \u3c .05, corrected). In contrast, for term scans (postmenstrual age of 37-41 weeks), tract-based spatial statistics analysis showed a significant relationship between both motor and cognitive scores with fractional anisotropy in the corpus callosum and corticospinal tracts (P \u3c .05, corrected). Tract-based spatial statistics in a limited subset of neonates (n = 22) scanned at CONCLUSIONS: The strength of the association between fractional anisotropy values and neurodevelopmental outcome scores increased from early-to-late-acquired scans in preterm-born neonates, consistent with brain dysmaturation in this population

    In situ recordings of large gelatinous spheres from NE Atlantic, and the first genetic confirmation of egg mass of Illex coindetii (Vérany, 1839) (Cephalopoda, Mollusca)

    Get PDF
    In total, 90 gelatinous spheres, averaging one meter in diameter, have been recorded from ~ 1985 to 2019 from the NE Atlantic Ocean, including the Mediterranean Sea, using citizen science. More than 50% had a dark streak through center. They were recorded from the surface to ~ 60–70 m depth, mainly neutrally buoyant, in temperatures between 8 and 24°C. Lack of tissue samples has until now, prohibited confirmation of species. However, in 2019 scuba divers secured four tissue samples from the Norwegian coast. In the present study, DNA analysis using COI confirms species identity as the ommastrephid broadtail shortfin squid Illex coindetii (Vérany, 1839); these are the first confirmed records from the wild. Squid embryos at different stages were found in different egg masses: (1) recently fertilized eggs (stage ~ 3), (2) organogenesis (stages ~ 17–19 and ~ 23), and (3) developed embryo (stage ~ 30). Without tissue samples from each and every record for DNA corroboration we cannot be certain that all spherical egg masses are conspecific, or that the remaining 86 observed spheres belong to Illex coindetii. However, due to similar morphology and size of these spheres, relative to the four spheres with DNA analysis, we suspect that many of them were made by I. coindetii

    White matter injury in term neonates with congenital heart diseases: Topology & comparison with preterm newborns

    Get PDF
    Background: Neonates with congenital heart disease (CHD) are at high risk of punctate white matter injury (WMI) and impaired brain development. We hypothesized that WMI in CHD neonates occurs in a characteristic distribution that shares topology with preterm WMI and that lower birth gestational age (GA) is associated with larger WMI volume. Objective: (1) To quantitatively assess the volume and location of WMI in CHD neonates across three centres. (2) To compare the volume and spatial distribution of WMI between term CHD neonates and preterm neonates using lesion mapping. Methods: In 216 term born CHD neonates from three prospective cohorts (mean birth GA: 39 weeks), WMI was identified in 86 neonates (UBC: 29; UCSF: 43; UCZ: 14) on pre- and/or post-operative T1 weighted MRI. WMI was manually segmented and volumes were calculated. A standard brain template was generated. Probabilistic WMI maps (total, pre- and post-operative) were developed in this common space. Using these maps, WMI in the term CHD neonates was compared with that in preterm neonates: 58 at early-in-life (mean postmenstrual age at scan 32.2 weeks); 41 at term-equivalent age (mean postmenstrual age at scan 40.1 weeks). Results: The total WMI volumes of CHD neonates across centres did not differ (p = 0.068): UBC (median = 84.6 mm 3 , IQR = 26–174.7 mm 3 ); UCSF (median = 104 mm 3 , IQR = 44–243 mm 3 ); UCZ (median = 121 mm 3 , IQR = 68–200.8 mm 3 ). The spatial distribution of WMI in CHD neonates showed strong concordance across centres with predilection for anterior and posterior rather than central lesions. Predominance of anterior lesions was apparent on the post-operative WMI map relative to the pre-operative map. Lower GA at birth predicted an increasing volume of WMI across the full cohort (41.1 mm 3 increase of WMI per week decrease in gestational age; 95% CI 11.5–70.8; p = 0.007), when accounting for centre and heart lesion. While WMI in term CHD and preterm neonates occurs most commonly in the intermediate zone/outer subventricular zone there is a paucity of central lesions in the CHD neonates relative to preterms. Conclusions: WMI in term neonates with CHD occurs in a characteristic topology. The spatial distribution of WMI in term neonates with CHD reflects the expected maturation of pre-oligodendrocytes such that the central regions are less vulnerable than in the preterm neonates

    In situ recordings of large gelatinous spheres from NE Atlantic, and the first genetic confirmation of egg mass of Illex coindetii (Vérany, 1839) (Cephalopoda, Mollusca)

    Get PDF
    In total, 90 gelatinous spheres, averaging one meter in diameter, have been recorded from ~ 1985 to 2019 from the NE Atlantic Ocean, including the Mediterranean Sea, using citizen science. More than 50% had a dark streak through center. They were recorded from the surface to ~ 60–70 m depth, mainly neutrally buoyant, in temperatures between 8 and 24°C. Lack of tissue samples has until now, prohibited confirmation of species. However, in 2019 scuba divers secured four tissue samples from the Norwegian coast. In the present study, DNA analysis using COI confirms species identity as the ommastrephid broadtail shortfin squid Illex coindetii (Vérany, 1839); these are the first confirmed records from the wild. Squid embryos at different stages were found in different egg masses: (1) recently fertilized eggs (stage ~ 3), (2) organogenesis (stages ~ 17–19 and ~ 23), and (3) developed embryo (stage ~ 30). Without tissue samples from each and every record for DNA corroboration we cannot be certain that all spherical egg masses are conspecific, or that the remaining 86 observed spheres belong to Illex coindetii. However, due to similar morphology and size of these spheres, relative to the four spheres with DNA analysis, we suspect that many of them were made by I. coindetii.publishedVersio

    The Registry and Follow-Up of Complex Pediatric Therapies Program of Western Canada: A Mechanism for Service, Audit, and Research after Life-Saving Therapies for Young Children

    Get PDF
    Newly emerging health technologies are being developed to care for children with complex cardiac defects. Neurodevelopmental and childhood school-related outcomes are of great interest to parents of children receiving this care, care providers, and healthcare administrators. Since the 1970s, neonatal follow-up clinics have provided service, audit, and research for preterm infants as care for these at-risk children evolved. We have chosen to present for this issue the mechanism for longitudinal follow-up of survivors that we have developed for western Canada patterned after neonatal follow-up. Our program provides registration for young children receiving complex cardiac surgery, heart transplantation, ventricular assist device support, and extracorporeal life support among others. The program includes multidisciplinary assessments with appropriate neurodevelopmental intervention, active quality improvement evaluations, and outcomes research. Through this mechanism, consistently high (96%) follow-up over two years is maintained

    Risk Factors for Periventricular-Intraventricular Hemorrhage in Premature Infants

    Get PDF
    Periventricular-intraventricular hemorrhage (PV-IVH) is a major cause of neurological disabilities in preterm newborns. This study aimed to determine the perinatal factors associated with PV-IVH. We conducted a retrospective case-control study from preterm infants born at ≤34 weeks of gestation and admitted to Neonatal Intensive Care Units of Seoul National University Children's Hospital and Seoul National University Bundang Hospital between June 2003 and December 2007. Neonates with no cranial sonographic data or infants transferred from other centers after three days of age were excluded. Of 1,044 eligible subjects, 59 infants with PV-IVH grade 2, 3, and 4 were allocated to the case group. The control group consisted of 118 infants without PV-IVH who were matched for gestational age and birth weight to each case of PV-IVH. At the multivariate logistic regression model, metabolic acidosis (odds ratio [OR]: 6.94; 95% confidence interval [CI]: 1.12-43.23) and use of inotropes (OR: 3.70; 95% CI: 1.16-11.84) were associated with an increased risk of PV-IVH. Maternal use of antenatal corticosteroids decreases the risk of PV-IVH (OR: 0.36; 95% CI: 0.14-0.92)

    The Canadian Perinatal Network: A National Network Focused on Threatened Preterm Birth at 22 to 28 Weeks\u27 Gestation

    Get PDF
    Objective: The Canadian Perinatal Network (CPN) maintains an ongoing national database focused on threatened very preterm birth. The objective of the network is to facilitate between-hospital comparisons and other research that will lead to reductions in the burden of illness associated with very preterm birth. Methods: Women were included in the database if they were admitted to a participating tertiary perinatal unit at 22+0 to 28+6 weeks\u27 gestation with one or more conditions most commonly responsible for very preterm birth, including spontaneous preterm labour with contractions, incompetent cervix, prolapsing membranes, preterm prelabour rupture of membranes, gestational hypertension, intrauterine growth restriction, or antepartum hemorrhage. Data were collected by review of maternal and infant charts, entered directly into standardized electronic data forms and uploaded to the CPN via a secure network. Results: Between 2005 and 2009, the CPN enrolled 2524 women from 14 hospitals including those with preterm labour and contractions (27.4%), short cervix without contractions (16.3%), prolapsing membranes (9.4%), antepartum hemorrhage (26.0%), and preterm prelabour rupture of membranes (23 0%) The mean gestational age at enrolment was 25.9 ± 1.9 weeks and the mean gestation age at delivery was 29.9 ± 5.1 weeks; 57.0% delivered at \u3c 29 weeks and 75.4% at \u3c 34 weeks. Complication rates were high and included serious maternal complications (26 7%), stillbirth (8.2%), neonatal death (16.3%), neonatal intensive care unit admission (60 7%), and serious neonatal morbidity (35 0%). Conclusion: This national dataset contains detailed information about women at risk of very preterm birth. It is available to clinicians and researchers who are working with one or more CPN collaborators and who are interested in studies relating processes of care to maternal or perinatal outcomes
    corecore